If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10x^2+1700x-47000=0
a = -10; b = 1700; c = -47000;
Δ = b2-4ac
Δ = 17002-4·(-10)·(-47000)
Δ = 1010000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1010000}=\sqrt{10000*101}=\sqrt{10000}*\sqrt{101}=100\sqrt{101}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1700)-100\sqrt{101}}{2*-10}=\frac{-1700-100\sqrt{101}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1700)+100\sqrt{101}}{2*-10}=\frac{-1700+100\sqrt{101}}{-20} $
| q+10=16 | | -2/3x+3/7=2/1 | | 2/3+2/3(x+1)^1/3=0 | | 0.03z-0.07=-0.04 | | 5m–4=1–6m | | 5x+3-3x=17 | | s/10=1 | | 1r−10=6(r+1) | | A+6=3a-14 | | A+3=2a-1 | | 7z+8=8+7z | | 3a×1=2a+3 | | 7/4(x+3)=2 | | 13x^2-152=0 | | 5.4/(2y)=9 | | 8n-20=8n-20 | | 7-4u=-4u+7 | | -18+y=10 | | 3^(x+1)=2187 | | -3·(x–2)–6x=8·(2x+7) | | Y+2-3=b | | (x+4)^2=x^2+29 | | 3/5x-11=28 | | 50h=150-45h | | 4/5m-11=37 | | 24+12m=180 | | 21x^2-9=0 | | 6m-6=8+4 | | 50x=150-45x | | 20÷x=1/3 | | 0.3z-0.03=0.04z | | 2^2x=0.125 |